Return Condensate to the Boiler

When steam transfers its heat in a manufacturing process, heat exchanger, or heating coil, it reverts to a liquid phase called condensate. An attractive method of improving your powerplant’s energy efficiency is to increase the condensate return to the boiler.

Returning hot condensate to the boiler makes sense for several reasons. As more condensate is returned, less makeup water is required, saving fuel, makeup water, and chemicals and treatment costs. Less condensate discharged into a sewer system reduces disposal costs. Return of high purity condensate also reduces energy losses due to boiler blowdown. Significant fuel savings occur as most returned condensate is relatively hot (130°F to 225°F), reducing the amount of cold makeup water (50°F to 60°F) that must be heated.

A simple calculation indicates that energy in the condensate can be more than 10% of the total steam energy content of a typical system. The graph shows the heat remaining in the condensate at various condensate temperatures, for a steam system operating at 100 psig, with makeup water at 55°F.

Example

Consider a steam system that returns an additional 10,000 lbs/hr of condensate at 180°F due to distribution modifications. Assume this system operates 8000 hours annually with an average boiler efficiency of 82%, and makeup water temperature of 55°F. The water and sewage costs for the plant are $0.002/gal and the water treatment cost is $0.002/gal. The fuel cost is $3.00 per Million Btu (MBtu). Assuming a 12% flash steam loss*, calculate the overall annual savings.

Annual Water, Sewage, and Chemicals Savings = (1 – Flash Steam Fraction) x (Condensate Load in lbs/hr) x Annual Operating Hours x (Total Water Costs in $/gal) ÷ (Water Density in lbs/gal)

Annual Fuel Savings = (1 – Flash Steam Fraction) x (Condensate Load in lbs/hr) x Annual Operating Hours x (Makeup Water Temperature rise in °F) x (Fuel Cost in $/Btu) ÷ Boiler Efficiency

Total Annual Savings Due to Return of an Additional 10,000 lbs/hr of Condensate = $33,760 + $32,195 = $65,955

* When saturated condensate is reduced to some lower pressure, some condensate flashes off to steam again. This amount is the flash steam loss.
The Office of Industrial Technologies (OIT), through partnerships with industry, government, and non-governmental organizations, develops and delivers advanced energy efficiency, renewable energy, and pollution prevention technologies for industrial applications. OIT is part of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy.

OIT encourages industry-wide efforts to boost resource productivity through a strategy called Industries of the Future (IOF). IOF focuses on the following nine energy and resource intensive industries:

- Agriculture
- Chemicals
- Glass
- Mining
- Steel
- Aluminum
- Forest Products
- Metal Casting
- Petroleum

To help industries begin to save energy, reduce costs, and cut pollution right away, OIT offers a comprehensive portfolio of emerging technology, practices, tools, information, and resources in a variety of application areas, such as motor systems, steam systems, compressed air systems, and combined heat and power systems. Likewise, OIT’s Industrial Assessment Centers (IAC), located throughout the U.S., offer energy, waste, and productivity assessments to small and medium-sized manufacturers. Users can take advantage of the abundant resources, such as software, fact sheets, training materials, etc. available from OIT.

Motor Systems — helps industry increase productivity and reliability through energy-efficient electric motor-driven systems.

Documents -
- Buying an Energy-Efficient Electric Motor
- Optimizing Your Motor-Driven System
- Energy Management for Motor Driven Systems
- Improving Pumping System Performance: A Sourcebook for Industry

Software –
- MotorMaster+ 3.0 and training CD
- ASDMaster
- Pumping System Assessment Tool

Training –
- MotorMaster+ 3.0 Software
- Adjustable Speed Drive Application
- Pumping System Optimization
- Pumping System Assessment Tool

Steam Systems — helps industry enhance productivity, increase profits, and reduce emissions through better steam system management.

Documents –
- Energy Efficiency Handbook
- Plant Services Article - The Steam Challenge
- Energy Manager Article - Steaming Ahead
- Oak Ridge National Laboratory’s Insulation Guidelines
- 1998 IETC Steam Session Papers

Case Studies –
- Georgia Pacific Achieves 6-Month Payback
- Bethlehem Steel Showcase Demonstration

Software –
- 3EPlus Software for Determining Optimal Insulation Thickness

Compressed Air Systems — dedicated to improving the efficiency and performance of industrial compressed air systems.

Documents –
- Improving Compressed Air System Performance: A Sourcebook for Industry

Training –
- Fundamentals of Compressed Air Systems
 (For schedule and location, call (800) 862-2086)

Industrial Assessment Centers — enable small and medium-sized manufacturers to have comprehensive industrial assessments performed at no cost to the manufacturer.

Documents –
- IAC Database

For more information, simply check the box next to the product, fill out the form below and fax back to (360) 586-8303:

Name: __ Title: __________________________
Organization: __
Address: __
City: __________________________ State: __________________________ Zip: __________________________
Phone: __________________________ Fax: __________________________ E-mail: __________________________
Comments: __

For more information on Motor, Steam, Compressed Air Systems, and IACs, call the OIT Clearinghouse at (800) 862-2086, or access the Web site at www.oit.doe.gov.